カルボニル化合物がルイス酸に配位するとLUMOが低くなる話

学生の時にそう習ったんだけど、ほんまかいなと思い、GAMESSでDFT計算をして確かめることにしました。

 

なるべくシンプルにということで、カルボニル化合物としてアセトン、ルイス酸として3フッ化ホウ素をピックアップ。

まずは初期構造のモデリング。座標データを吐き出して、パラメータを追加。

アセトン分子のGAMESS入力ファイル。構造の最適化のみで、振動解析はまだしません。

アセトン分子が3フッ化ホウ素分子に配位したやつの入力ファイル。

構造最適化して得られた、アセトン分子構造。振動解析(入力ファイルはこの記事の最後に)で、虚の振動数がないことは確認しています。

同じく、アセトン分子が3フッ化ホウ素分子に配位したやつの構造。カルボニル基の右隣の炭素に結合している酔語原子の位置が、アセトン分子そのもののと違うのは、3フッ化ホウ素の立体的は影響のせいでしょうか。

ここで、2つモデルのカルボニル基の違いを見ておきましょう。

項目: アセトン分子のもの; アセトン分子&3フッ化ホウ素分子のもの
C=O原子間距離 (Å): 1.216; 1.240
C=O振動数 (cm–1): 1822; 1735
Bond order: 1.953; 1.687
Mülliken charge (C=O, C): 0.452; 0.479

つまり、DFT計算上では、アセトン分子が3フッ化ホウ素分子に配位すると、C=O原子間距離が長くなる、結果としてC=O振動数 (赤外吸収の波数, 実測値よりも大きく算出されるのはおやくそく)も結合次数も低くなるということです。

そして、カルボニル基の電荷が小さく(電気的により陽性に)なるのですね。

次に、アセトン分子のπ軌道とπ*軌道。

同じく、アセトン分子が3フッ化ホウ素分子に配位したやつの軌道。

それぞれのエネルギー準位周りのデータは以下の通り。

項目: アセトン分子のもの; アセトン分子&3フッ化ホウ素分子のもの
π (eV): –9.347; -10.860
π* (eV): –0.211; -2.032
π–π* gap: 9.136; 8.828

確かに、配位することにより、πもπ*も、エネルギー準位が低くなっています。そして、π–π*の準位さも小さくなります。

 

というわけで、25年来の自分の中の疑問が自分なりに少しスッキリしました。

 

[おまけ] 振動解析のGAMESS入力ファイル

アセトン分子

アセトン分子が3フッ化ホウ素分子に配位したやつ

 

キーワード: カルボニル化合物・ルイス酸・配位・LUMO・低くなる

 

[あわせてどうぞ]

Avogadroで分子モデリング

[水素水] HnOがどのくらい不安定かたくさん計算しました

 

Comments are closed.