General Atomics (GA)
go ahead (GA)
graphical abstract (GA)

(1) Structure investigations of Schiff bases derived from 3-amino-1H-1,2,4-triazole (J. Mol. Struct. 2019, 1184, 207−218; https://doi.org/10.1016/j.molstruc.2019.02.027) GA, 90-02-8, N, SS, Htrz, Htz, tzH, trz, NH2, TAZ, SB, BzH, PhCHO, PhOH

(2) Chemically grafted of single-walled carbon nanotubes onto a functionalized silicon surface (J. Alloys Compd. 2017, 694, 1036−1044; 10.1016/j.jallcom.2016.10.123) FTIR, AF, NT, SWCNT, APTES, GA, AFM, IR, C, Si, EM, FT, SEM, US, pSi, COOH, CNT, APTEOS, APS, APTS, PPS

(3) Parasitic Currents Caused by Different Ionic and Electronic Conductivities in Fuel Cell Anodes (ACS Appl. Mater. Interfaces 2015, 7, 15746−15751; 10.1021/acsami.5b02182) GA, C, H, EC, FC, Nf

(4) Impact of oxygen transport properties on the kinetic modeling of polypropylene thermal oxidation. II. Effect of oxygen diffusivity (J. Appl. Polym. Sci. 2015, 132, n/a−n/a; 10.1002/app.41562) PP, O, GA

gallium (Ga)

(1) A study of composition effects on the bandgaps in a series of new alkali metal aluminum/gallium iodates (Dalton Trans. 2020, 49, 2337−2344; 10.1039/D0DT00035C) Ga

(2) Effects of gallium substitution on crystal growth and properties of gehlenite single crystal (J. Alloys Compd. 2020, 823, 153856−; https://doi.org/10.1016/j.jallcom.2020.153856) PE, Ga

(3) Impact of thermal-induced sapphire substrate erosion on material and photodetector characteristics of sputtered Ga2O3 films (J. Alloys Compd. 2020, 823, 153755−; https://doi.org/10.1016/j.jallcom.2020.153755) FA, PD, RTA, Ga

(4) van der Waals Integrated Devices Based on Nanomembranes of 3D Materials (Nano Lett. 2020, 20, 1410−1416; 10.1021/acs.nanolett.9b05027) VdW, HL, Ga

(5) Investigation of structural, magnetic and dielectric properties of gallium substituted Z-type Sr3Co2-xGaxFe24O41 hexaferrites for microwave absorbers (J. Alloys Compd. 2020, 822, 153470−; https://doi.org/10.1016/j.jallcom.2019.153470) av., HS, FMR, Ga

generic linear algorithm (GA)
general assembly (GA)
geldanamycin (GA)

(1) Solvent-Induced Protein Precipitation for Drug Target Discovery on the Proteomic Scale (Anal. Chem. 2020, 92, 1363−1371; 10.1021/acs.analchem.9b04531) pptn., MTX, AA, H, Sn, CH3CH2OH, HT, DMK, WB, GA

(2) New geldanamycin derivatives with anti Hsp properties by mutasynthesis (Org. Biomol. Chem. 2019, 17, 5269−5278; 10.1039/C9OB00892F) HSP, TP, AA, TPH, GA

(3) Chemo-Selection Strategy for Limited Proteolysis Experiments on the Proteomic Scale (Anal. Chem. 2018, 90, 14039−14047; 10.1021/acs.analchem.8b04122) CyA, Lys, K, NHS, HOSu, GA, SC, MS

(4) Effects of Inhibitors on Hsp90′s Conformational Dynamics, Cochaperone and Client Interactions (ChemPhysChem 2018, 19, 1716−1721; 10.1002/cphc.201800342) MI, HSP, GA

(5) Heat Shock Proteins Revisited: Using a Mutasynthetically Generated Reblastatin Library to Compare the Inhibition of Human and Leishmania Hsp90s (ChemBioChem 2018, 19, 562−574; 10.1002/cbic.201700616) HSP, ITC, FL, GA

glutaraldehyde (GA)

(1) Water-Stable Flexible Nanocellulose Chiral Nematic Films through Acid Vapor Cross-Linked Glutaraldehyde for Chiral Nematic Templating (ACS Macro Lett. 2020, 9, 146−151; 10.1021/acsmacrolett.9b00826) aq., CP, CNC, Fe, Met, CN, EISA, GA

(2) Glutaraldehyde Cross-Linking of Oligolysines Coating DNA Origami Greatly Reduces Susceptibility to Nuclease Degradation (J. Am. Chem. Soc. 2020, 142, 3311−3315; 10.1021/jacs.9b11698) NS, GA

(3) High Adsorption Capacity of an sp2/sp3-N-Rich Polymeric Network: From Molecular Iodine Capture to Catalysis (ACS Appl. Polym. Mater. 2020, 2, 152−158; 10.1021/acsapm.9b00926) Fe, GA

(4) Construction of a stable zwitterionic layer on negatively-charged membrane via surface adsorption and cross-linking (J. Membr. Sci. 2020, 597, 117766−; https://doi.org/10.1016/j.memsci.2019.117766) MPC, GA

(5) Cell performance of direct methanol alkaline fuel cell (DMAFC) using anion exchange membranes prepared from PVA-Based block copolymer (J. Membr. Sci. 2020, 597, 117618−; https://doi.org/10.1016/j.memsci.2019.117618) AFC, PEM, PEM, AEM, GA

glycolic acid (GA)

(1) Poly(lactic-co-glycolic) Acid–Lipid Hybrid Microparticles Enhance the Intracellular Uptake and Antibacterial Activity of Rifampicin (ACS Appl. Mater. Interfaces 2020, 12, 8030−8039; 10.1021/acsami.9b22991) aq., Fe, Sn, Mat, RIF, LNP, MP, CFU, SA, NP, GA

(2) Water-Soluble Rhenium Phosphine Complexes Incorporating the Ph2C(X) Motif (X = O, NH): Structural and Cytotoxicity Studies (Inorg. Chem. 2020, 59, 2367−2378; 10.1021/acs.inorgchem.9b03239) Tc, AdH, Ada, CH3CH2OH, G, rfx, Gly, Phg, GA

(3) Investigating Protein–Nanocrystal Interactions for Photodriven Activity (ACS Appl. Bio Mater. 2020, 3, 1026−1035; 10.1021/acsabm.9b01025) MI, Cys, ET, C, N, Sn, NH2, SC, TGA, OTS, GA

(4) Modelling protein therapeutic co-formulation and co-delivery with PLGA nanoparticles continuously manufactured by microfluidics (React. Chem. Eng. 2020, 5, 308−319; 10.1039/C9RE00395A) Sn, NP, GA

(5) A free-floating mucin layer to investigate the effect of the local microenvironment in lungs on mucin-nanoparticle interactions (Acta Biomater. 2020, 104, 115−123; https://doi.org/10.1016/j.actbio.2020.01.014) at., AF, Fe, QCMB, QCM, QCM-D, Sn, IS, NP, GA

gallic acid (GA)

(1) A comparative study of carbon nanotube dispersions assisted by cationic reagents as electrode modifiers: Preparation, characterization and electrochemical performance for gallic acid detection (J. Electroanal. Chem. 2020, 857, 113750−; https://doi.org/10.1016/j.jelechem.2019.113750) aq., DPV, NT, CTA, CTACl, CTMA, DAD, DTAC, GC, GCE, FESEM, CTAC, Et, C, EC, Al, em, TA, TMA, Sn, am, EM, US, FE, DMA, CNT, PDADMAC, expt., NH4Cl, PhOH, GA

(2) Small-Pore Gallates MOFs for Environmental Applications: Sorption Behaviors and Structural Elucidation of Their High Affinity for CO2 (J. Phys. Chem. C 2020, 124, 3188−3195; 10.1021/acs.jpcc.9b11535) XRPD, g, lb, PSA, VSA, IAST, H, AP, XR, LFG, expt., OTS, GA

(3) Antioxidant properties of aqueous selenium nanoparticles (ASeNPs) and its catalysts activity for 1, 1-diphenyl-2-picrylhydrazyl (DPPH) reduction (J. Mol. Struct. 2020, 1205, 127637−; https://doi.org/10.1016/j.molstruc.2019.127637) DLS, at., aq., av., a.p.s., LS, CMD, LDS, EDS, EDX, ICP, IS, RSA, R, em, Sn, UV, EM, FT, Se, Na, aps, DSL, AES, HRTEM, FG, NP, DLA, morphol., morph., OTS, GA

(4) A novel 3-((5-methylpyridin-2-yl)amino)isobenzofuran-1(3H)-one: Molecular structure describe, X-ray diffractions and DFT calculations, antioxidant activity, DNA binding and molecular docking studies (J. Mol. Struct. 2020, 1205, 127585−; https://doi.org/10.1016/j.molstruc.2019.127585) XRSCD, MESP, ESP, det., MEP, lb, EP, Fe, RSA, Et, Abs, H, R, Sn, XR, QC, SG, UC, GS, SCD, ABS, GAE, thermodn., estn., expt., PhOH, GA

(5) LCST Behaviors of Amphiphilic Pyridine Derivatives with Oligo(ethylene glycol) Chains (Chem. Lett. 2020, 49, 214−217; 10.1246/cl.190835) aq., Et, OEG, pyr, LCST, EG, GA

glycyrrhetinic acid (GA)

(1) Design, Synthesis, Antibacterial Evaluation, and Induced Apoptotic Behaviors of Epimeric and Chiral 18β-Glycyrrhetinic Acid Ester Derivatives with an Isopropanolamine Bridge against Phytopathogens (J. Agric. Food Chem. 2019, 67, 13212−13220; 10.1021/acs.jafc.9b06147) lb, Cu, MOA, Sn, EM, NH2, expt., GA

(2) Design, Synthesis, Antibacterial Evaluation, and Induced Apoptotic Behaviors of Epimeric and Chiral 18β-Glycyrrhetinic Acid Ester Derivatives with an Isopropanolamine Bridge against Phytopathogens (J. Agric. Food Chem. 2019, 67, 13212−13220; 10.1021/acs.jafc.9b06147) lb, Cu, MOA, Sn, EM, NH2, expt., GA

(3) Tumor-Associated Fibroblast-Targeted Regulation and Deep Tumor Delivery of Chemotherapeutic Drugs with a Multifunctional Size-Switchable Nanoparticle (ACS Appl. Mater. Interfaces 2019, 11, 39545−39559; 10.1021/acsami.9b13957) EM, Fe, Lys, K, Sn, Mat, MMP, MNP, PLL, NP, GMC, GA

February 25, 2020
February 25, 2020
Org. Lett. 2020, 22 (4), 1594−1598.
February 21, 2020
February 21, 2020
J. Am. Chem. Soc. 2020, 142 (7), 3366−3370.
February 20, 2020
February 20, 2020
Org. Lett. 2020, 2 (3), 791−794.
February 19, 2020
February 19, 2020
Chem. Lett. 2020, 49 (3), 252−253.
January 21, 2020
Chem. Lett. 2020, 49 (1), 10−13.
January 21, 2020
September 29, 2016
July 16, 2019
Org. Lett. 2019, 21 (13), 4966−4970.
October 23, 2019
J. Am. Chem. Soc. 2019, 141 (41), 16227−16231.
April 12, 2019
Org. Lett. 2019, 21 (7), 2265−2268.
December 26, 2015
September 10, 2018
January 27, 2020
J. Am. Chem. Soc. 2020, 142 (3), 1186−1189.
September 22, 2019
October 18, 2019
Angew. Chem. Int. Ed. 2019, 58 (43), 15496−15503.
May 29, 2017
May 20, 2019
Org. Lett. 2019, 21 (9), 3299−3303.
April 20, 2016
February 14, 2019
Angew. Chem. Int. Ed. 2019, 58 (8), 2505−2509.
January 1, 2020
December 11, 2019
March 11, 2016
June 7, 2016
May 28, 2016
October 5, 2017
February 11, 2018
September 30, 2019
November 22, 2016
June 7, 2016
December 29, 2015
December 26, 2019
December 29, 2015
December 20, 2019
(c) Nanoniele, 2003-