linear regression slope (LRS)

(1) Anion-Specific Sulfur Isotope Analysis by Liquid Chromatography Coupled to Multicollector ICPMS (Anal. Chem. 2019, 91, 10088−10094; 10.1021/acs.analchem.9b02038) ICP, LC, S, Na, Mat, LRS, ICPMS, SSB, MS

(2) Development of an analytical methodology for obtaining quantitative mass concentrations from LAAP-ToF-MS measurements (Talanta 2017, 174, 715−724; https://doi.org/10.1016/j.talanta.2017.06.050) AN, SMPS, TOF, am, AMS, PSD, Mat, ABS, LRS, NP, MAAP, OPC

(3) Absolute Quantification of Enterococcal 23S rRNA Gene Using Digital PCR (Environ. Sci. Technol. 2016, 50, 3399−3408; 10.1021/acs.est.5b05747) Ca, HA, LRS

(4) Improving Precision and Accuracy of Isotope Ratios from Short Transient Laser Ablation-Multicollector-Inductively Coupled Plasma Mass Spectrometry Signals: Application to Micrometer-Size Uranium Particles (Anal. Chem. 2016, 88, 4375−4382; 10.1021/acs.analchem.5b04802) U, ICP, MS, LRS

low resistance state (LRS)

(1) Flexible resistive switching device based on the TiO2 nanorod arrays for non-volatile memory application (J. Alloys Compd. 2020, 822, 153552−; https://doi.org/10.1016/j.jallcom.2019.153552) NRA, fac, Sn, ret, RS, LRS

(2) Insights into Multilevel Resistive Switching in Monolayer MoS2 (ACS Appl. Mater. Interfaces 2020, 12, 6022−6029; 10.1021/acsami.9b15677) at., AF, sepd., Mo, HRS, J, SR, Sn, S, cAFM, HRS, CVD, expt., LRS

(3) Developing Precursor Chemistry for Atomic Layer Deposition of High-Density, Conformal GeTe Films for Phase-Change Memory (Chem. Mater. 2019, 31, 8663−8672; 10.1021/acs.chemmater.9b01937) PCM, PCM, esp., at., AR, RAM, ALD, PCRAM, PC, Sn, LRS

(4) Resistive Switching in Semimetallic SrIrO3 Thin Films (ACS Appl. Electron. Mater. 2019, 1, 1981−1988; 10.1021/acsaelm.9b00519) AF, cAFM, RS, LRS, AFM, TF

(5) Physically transient memristor based on the permeation of water at the interface of electrode and substrate (J. Alloys Compd. 2019, 810, 151957−; https://doi.org/10.1016/j.jallcom.2019.151957) HRS, ret, RS, LRS, BRS, TF

low resistive state (LRS)

(1) Complex magnetic ordering in nanoporous [Co/Pd]5-IrMn multilayers with perpendicular magnetic anisotropy and its impact on magnetization reversal and magnetoresistance (Phys. Chem. Chem. Phys. 2020, 22, 3661−3674; 10.1039/C9CP05947D) MR, Sn, LRS

(2) S-Layer Protein for Resistive Switching and Flexible Nonvolatile Memory Device (ACS Appl. Mater. Interfaces 2018, 10, 4866−4873; 10.1021/acsami.7b15062) tr, ITO, In, PE, Sn, ret, HRS, LRS, RS, RT

(3) Resistive Random Access Memory Cells with a Bilayer TiO2/SiOX Insulating Stack for Simultaneous Filamentary and Distributed Resistive Switching (Adv. Funct. Mater. 2017, 27, n/a−n/a; 10.1002/adfm.201700384) RAM, HRS, LRS, RS, RRAM, ReRAM

(4) Multi-Nonvolatile State Resistive Switching Arising from Ferroelectricity and Oxygen Vacancy Migration (Adv. Mater. 2017, 29, n/a−n/a; 10.1002/adma.201606165) as, O, LRS, OV, Ovac, FTJ, RS

(5) Resistive switching characteristics of all-solution-based Ag/TiO2/Mo-doped In2O3 devices for non-volatile memory applications (J. Mater. Chem. C 2016, 4, 10967−10972; 10.1039/C6TC03607D) RAM, tr, EC, ret, LRS, RS, RT, NP

local rotational symmetry (LRS)

(1) Local rotational symmetry in the packing of uniform spheres (Phys. Chem. Chem. Phys. 2017, 19, 14588−14595; 10.1039/C7CP01152K) LRS

laser Raman spectroscopy (LRS)

(1) Real-Time Measurement of Airborne Carbon Nanotubes in Workplace Atmospheres (Anal. Chem. 2019, 91, 12713−12723; 10.1021/acs.analchem.9b02178) NT, DPM, Ra, PC, C, PM, DL, CNT, LRS

(2) Comprehensive Insight into the Protein–Surface Biomolecular Interactions on a Smart Material: Complex Formation between Poly(N-vinyl Caprolactam) and Heme Protein (J. Phys. Chem. B 2019, 123, 6331−6344; 10.1021/acs.jpcb.9b04521) FTIR, DLS, LS, LDS, Hb, Mb, MI, FESEM, Ra, FL, Abs, em, EM, FT, DSL, LCST, ABS, FE, DSC, 105-60-2, DLA, MGB, LRS, CST, SSF, TEM, e-, SEM, IR

(3) Synthesis, structural, vibrational, thermal, dielectric and optical properties of third order nonlinear optical single crystal for optical power limiting applications (J. Mol. Struct. 2019, 1191, 110−117; https://doi.org/10.1016/j.molstruc.2019.04.091) AP, APY, Ra, H, XR, SCXRD, SG, NLO, FG, OPL, 2-APY, 504-29-0, LRS, XRD, SC, HB

(4) Effect of iron ion diffusion on the corrosion behavior of carbon steels in soil environment (RSC Adv. 2018, 8, 40544−40553; 10.1039/C8RA08032A) Fe, Ra, C, EM, SEM, SKP, LRS, e-

(5) Propane oxidation by vanadium supported on activated carbon from sugarcane straw (Molecular Catalysis 2018, 458, 317−325; https://doi.org/10.1016/j.mcat.2017.11.010) V, PE, Ra, ODH, VOx, C, XPS, XR, EM, AC, SEM, PS, FG, ODHP, NH3, C3H8, LRS, XRD, e-, C

liquid rich shale (LRS)

(1) Investigation of asphaltene-derived formation damage and nano-confinement on the performance of CO2 huff-n-puff in shale oil reservoirs (J. Pet. Sci. Eng. 2019, 182, 106304−; https://doi.org/10.1016/j.petrol.2019.106304) HC, LRS

(2) An approximate semianalytical method for two-phase flow analysis of liquid-rich shale gas and tight light-oil wells (J. Pet. Sci. Eng. 2019, 176, 562−572; https://doi.org/10.1016/j.petrol.2019.01.085) PC, MFHW, SRV, LRS, SG

(3) Study impact of sample treatment and insitu fluids on shale wettability measurement using NMR (J. Pet. Sci. Eng. 2019, 176, 352−361; https://doi.org/10.1016/j.petrol.2019.01.048) CA, He, MR, HC, NMR, LRS, e-, SEM

(4) Further Investigation of Effects of Injection Pressure and Imbibition Water on CO2 Huff-n-Puff Performance in Liquid-Rich Shale Reservoirs (Energy Fuels 2018, 32, 5789−5798; 10.1021/acs.energyfuels.8b00536) LRS

(5) Low-salinity water and surfactants for hydraulic fracturing and EOR of shales (J. Pet. Sci. Eng. 2018, 162, 367−377; https://doi.org/10.1016/j.petrol.2017.12.057) LSW, Mat, EOR, Rf, SRV, LRS

local range separation (LRS)
February 21, 2020
February 21, 2020
J. Am. Chem. Soc. 2020, 142 (7), 3366−3370.
February 20, 2020
February 20, 2020
Org. Lett. 2020, 2 (3), 791−794.
February 19, 2020
February 19, 2020
Chem. Lett. 2020, 49 (3), 252−253.
February 18, 2020
February 18, 2020
Org. Lett. 2020, 22 (3), 1135−1138.
November 29, 2019
January 27, 2016
June 7, 2016
May 12, 2016
October 28, 2019
Angew Chem. Int. Ed. 2019, 58 (44), 15762−15766.
April 25, 2019
August 26, 2019
Chem. Commun. 2019, 55 (69), 10238−10240.
December 25, 2019
June 23, 2017
January 23, 2016
September 8, 2017
January 1, 2020
December 11, 2019
March 11, 2016
May 28, 2016
October 5, 2017
February 11, 2018
September 30, 2019
November 22, 2016
June 7, 2016
December 29, 2015
December 26, 2019
December 29, 2015
(c) Nanoniele, 2003-