mesoionic carbene (MIC)

(1) A crystalline C5-protonated 1,3-imidazol-4-ylidene (Chem. Commun. 2020, 56, 2027−2030; 10.1039/C9CC09428H) MIC

(2) Base-Controlled Directed Synthesis of Metal–Methyleneimidazoline (MIz) and Metal–Mesoionic Carbene (MIC) Compounds (Organometallics 2020, 39, 189−200; 10.1021/acs.organomet.9b00725) MIC

(3) Oxidative Access via Aqua Regia to an Electrophilic, Mesoionic Dicobaltoceniumyltriazolylidene Gold(III) Catalyst (Organometallics 2019, 38, 4383−4386; 10.1021/acs.organomet.9b00616) MIC

(4) Half-Sandwich Ir(III) and Os(II) Complexes of Pyridyl-Mesoionic Carbenes as Potential Anticancer Agents (Organometallics 2019, 38, 4082−4092; 10.1021/acs.organomet.9b00327) Thi, MIC

(5) Employing Aryl‐Linked Bis‐mesoionic Carbenes as a Pincer‐Type Platform to Access Ambient‐Stable Palladium(IV) Complexes (Angew. Chem. Int. Ed. 2019, 58, 16907−16911; 10.1002/anie.201911180) MIC

microwave-induced combustion (MIC)

(1) Determination of Se and Te in coal at ultra-trace levels by ICP-MS after microwave-induced combustion (J. Anal. At. Spectrom. 2019, 34, 998−1004; 10.1039/C9JA00048H) CRM, ICP, IF, O, MIC, ETV, RM, ICPMS, MAWD, MS

(2) New possibilities for pharmaceutical excipients analysis: Combustion combined with pyrohydrolysis system for further total chlorine determination by ICP-OES (Talanta 2019, 199, 124−130; https://doi.org/10.1016/j.talanta.2019.01.123) HP, IC, CRM, LOQ, ICP, IF, MAE, HPC, C, em, 67-66-3, O, Cl, MIC, OES, RM, ICP-OES

(3) An in situ pre-concentration method for fluorine determination based on successive digestions by microwave-induced combustion (Talanta 2019, 194, 314−319; https://doi.org/10.1016/j.talanta.2018.10.017) ISE, CRM, DOM, LOQ, IF, C, am, O, OM, F, CV, MIC, ABS, RM

(4) Microwave-induced combustion of graphene for further determination of elemental impurities using ICP-OES and TXRF (J. Anal. At. Spectrom. 2018, 33, 1910−1916; 10.1039/C8JA00229K) NT, CNC, MI, CN, C, O, MWI, MIC, CNT, NC, MAD

(5) Feasibility of As, Sb, Se and Te determination in coal by solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry (J. Anal. At. Spectrom. 2018, 33, 1384−1393; 10.1039/C8JA00129D) CRM, LOQ, ICP, O, MIC, ETV, OFR, RM, ICPMS, MAWD, MS

minimal inhibitory concentration (MIC)

(1) Comprehensive Understanding of the Plasmid-Mediated Colistin Resistance Gene mcr-1 in Aquatic Environments (Environ. Sci. Technol. 2020, 54, 1603−1613; 10.1021/acs.est.9b05919) Fe, EC, SM, Sn, MIC

(2) Silver(I) complexes with 1,10-phenanthroline-based ligands: The influence of epoxide function on the complex structure and biological activity (Inorg. Chim. Acta 2020, 502, 119357−; https://doi.org/10.1016/j.ica.2019.119357) Ag, det., OAc, A, Sn, XR, SCXRD, MIC

(3) Fast Biofilm Penetration and Anti-PAO1 Activity of Nebulized Azithromycin in Nanoarchaeosomes (Mol. Pharmaceutics 2020, 17, 70−83; 10.1021/acs.molpharmaceut.9b00721) det., Et, FL, Sn, GLY, MIC

(4) Albumin Broadens the Antibacterial Capabilities of Nonantibiotic Small Molecule-Capped Gold Nanoparticles (ACS Appl. Mater. Interfaces 2019, 11, 45381−45389; 10.1021/acsami.9b15107) esp., sc, GNP, AuNP, Au, pmd, m, Sn, SA, SA, MIC

(5) Antifungal Macrocyclic Trichothecenes from the Insect-Associated Fungus Myrothecium roridum (J. Agric. Food Chem. 2019, 67, 13033−13039; 10.1021/acs.jafc.9b04507) abs., det., lb, AC, Solt, ECD, MIC

maleimide coupling (MIC)

(1) Design of DNA Aptamer-Functionalized Magnetic Short Nanofibers for Efficient Capture and Release of Circulating Tumor Cells (Bioconjugate Chem. 2020, 31, 130−138; 10.1021/acs.bioconjchem.9b00816) av., CTC, MIC

(2) Direct Electron-Transfer Anisotropy of a Site-Specifically Immobilized Cellobiose Dehydrogenase (ACS Catal. 2019, 9, 7607−7615; 10.1021/acscatal.9b02014) Ca, DET, MIC, GC, GCE, CV, CV, Au, Cys, SPR, ET, FAD, C, C, WT, SP, MI, CDH, A, e-, Cat

(3) Controlled synthesis of diverse single-chain polymeric nanoparticles using polymers bearing furan-protected maleimide moieties (Polym. Chem. 2018, 9, 3238−3247; 10.1039/C8PY00481A) SCPN, DLS, AF, LS, SEC, MIC, LDS, LP, MR, ROM, MI, DSL, ROMP, NMR, MRS, 110-00-9, AFCT, AFCT, NP, DLA, AFM

(4) Conjugation Approach To Produce a Staphylococcus aureus Synbody with Activity in Serum (Bioconjugate Chem. 2015, 26, 2125−2132; 10.1021/acs.bioconjchem.5b00420) MIC, MRSA, AA, MI, SA

(5) Vapor-Based Multicomponent Coatings for Antifouling and Biofunctional Synergic Modifications (Adv. Funct. Mater. 2014, 24, 2281−2287; 10.1002/adfm.201303050) PEG, MIC, PMMA, PE, Me, MI, EC, HUVEC, QCMB, 922-67-8, CVD, QCM

melting induced contraction (MIC)

(1) One-way and two-way shape memory effects of a high-strain cis-1,4-polybutadiene–polyethylene copolymer based dynamic network via self-complementary quadruple hydrogen bonding (Polym. Chem. 2019, 10, 718−726; 10.1039/C8PY01614C) SMP, H, CL, SME, SF, SR, TWSME, HB, CIE, MIC

(2) A Fascinating Metallo-Supramolecular Polymer Network with Thermal/Magnetic/Light-Responsive Shape-Memory Effects Anchored by Fe3O4 Nanoparticles (Macromolecules 2018, 51, 705−715; 10.1021/acs.macromol.7b02641) SP, IONP, Fe, SMP, SPION, IR, CL, 120-80-9, SME, TWSME, AMF, SPIO, NP, NIR, SPN, CIE, MIC

(3) Creating Poly(tetramethylene oxide) Glycol-Based Networks with Tunable Two-Way Shape Memory Effects via Temperature-Switched Netpoints (Macromolecules 2017, 50, 5155−5164; 10.1021/acs.macromol.6b02773) anth, ANT, AN, LA, SME, TWSME, DMA, DSC, PTMO, CIE, MIC

minimal inhibitor concentration (MIC)

(1) Novel antibacterial application of photovoltaic Cu2SnS3 (CTS) nanoparticles (RSC Adv. 2017, 7, 33737−33744; 10.1039/C7RA05194H) Ra, PV, XR, EM, SA, NP, XRD, ZOI, TEM, MIC

microwave spectroscopy (Mic)

(1) The Importance of How the Pieces Fit Together: The Microwave Spectrum and Molecular Structure of 2-Chloro-1,1-Difluoroethylene–Acetylene (J. Phys. Chem. A 2020, 124, 1382−1389; 10.1021/acs.jpca.9b11861) det., Mic

(2) Bayesian Analysis of Theoretical Rotational Constants from Low-Cost Electronic Structure Methods (J. Phys. Chem. A 2020, 124, 898−910; 10.1021/acs.jpca.9b09982) det., Mic

(3) Large Amplitude Motions in Fruit Flavors: The Case of Alkyl Butyrates (ChemPhysChem 2020, 21, 20−25; 10.1002/cphc.201900727) Mic

(4) High-Resolution Gas Phase Spectroscopy of Molecules Desorbed from an Ice Surface: A Proof-of-Principle Study (ACS Earth Space Chem. 2020, 4, 86−91; 10.1021/acsearthspacechem.9b00246) Mic

(5) Large Amplitude Motions in Fruit Flavors: The Case of Alkyl Butyrates (ChemPhysChem 2020, 21, 20−25; 10.1002/cphc.201900727) Mic

magnetic immobilized cellulase (MIC)

(1) Comparing Immobilized Cellulase Activity in a Magnetic Three-Phase Fluidized Bed Reactor under Three Types of Magnetic Field (Ind. Eng. Chem. Res. 2018, 57, 10841−10850; 10.1021/acs.iecr.8b02195) CHIT, CHI, CTS, AMF, CS, FBR, MIC, PMF, SMF

microbiologically influenced corrosion (MIC)

(1) Characteristics of biofilm community structure in a reclaimed water cast iron pipeline (Environ. Sci.: Water Res. Technol. 2018, 4, 1489−1500; 10.1039/C8EW00240A) Fe, PE, HDPE, OTU, MIC

(2) The influence of cathodic protection potential on the biofilm formation and corrosion behaviour of an X70 steel pipeline in sulfate reducing bacteria media (J. Alloys Compd. 2017, 729, 180−188; https://doi.org/10.1016/j.jallcom.2017.09.181) Cu, SRB, MIC, CSE

(3) Effect of fluid flow on biofilm formation and microbiologically influenced corrosion of pipelines in oilfield produced water (J. Pet. Sci. Eng. 2017, 156, 451−459; https://doi.org/10.1016/j.petrol.2017.06.026) SRB, MIC

(4) Effect of Pseudomonas fluorescens on Buried Steel Pipeline Corrosion (Environ. Sci. Technol. 2017, 51, 8501−8509; 10.1021/acs.est.7b00437) OCP, EIS, Fe, IS, C, EC, MIC

(5) Electrochemical Testing of Biocide Enhancement by a Mixture of d-Amino Acids for the Prevention of a Corrosive Biofilm Consortium on Carbon Steel (Ind. Eng. Chem. Res. 2017, 56, 7640−7649; 10.1021/acs.iecr.7b01534) AA, C, EC, Y, Tyr, EM, SEM, Leu, L, Trp, W, CLSM, Met, M, MIC

minimum-image convention (MIC)

(1) Robust Periodic Fock Exchange with Atom-Centered Gaussian Basis Sets (J. Chem. Theory Comput. 2018, 14, 4567−4580; 10.1021/acs.jctc.8b00122) SCF, GTO, ALGM, MIC, TCI

motility induced clustering (MIC)

(1) Clustering of microswimmers: interplay of shape and hydrodynamics (Soft Matter 2018, 14, 8590−8603; 10.1039/C8SM01390J) MIC

many integrated core (MIC)

(1) Performance of heterogeneous computing with graphics processing unit and many integrated core for hartree potential calculations on a numerical grid (J. Comput. Chem. 2016, 37, 2193−2201; 10.1002/jcc.24443) Ag, GPU, ES, MIC, AgNP, NP

(2) Implementation of High-Order Multireference Coupled-Cluster Methods on Intel Many Integrated Core Architecture (J. Chem. Theory Comput. 2016, 12, 1129−1138; 10.1021/acs.jctc.5b00957) CC, MR, MRCC, MIC

(3) Efficient Parallel Linear Scaling Construction of the Density Matrix for Born–Oppenheimer Molecular Dynamics (J. Chem. Theory Comput. 2015, 11, 4644−4654; 10.1021/acs.jctc.5b00552) BO, GPU, ALGM, PE, Mat, DM, BOMD, MDS, MD, TB, MIC

metabolic-intermediate complex (MIC)
methyl isocyanate (MIC)

(1) Experimental and Theoretical Understanding of the Gas Phase Oxidation of Atmospheric Amides with OH Radicals: Kinetics, Products, and Mechanisms (J. Phys. Chem. A 2015, 119, 4298−4308; 10.1021/jp503759f) TPR, PTR-MS, For, 75-12-7, NMF, PT, MIC, HNCO, Me, MS, R, Alk, SAR, NMA, 60-35-5

(2) Determination of Methyl Isocyanate in Outdoor Residential Air near Metam-Sodium Soil Fumigations (J. Agric. Food Chem. 2014, 62, 8921−8927; 10.1021/jf501696a) MITC, I, MIC, Me, 57-13-6, Na

(3) Gas-Phase Reaction of Methyl Isothiocyanate and Methyl Isocyanate with Hydroxyl Radicals under Static Relative Rate Conditions (J. Agric. Food Chem. 2014, 62, 1792−1795; 10.1021/jf404526t) MITC, MIC, Me, R, Na

minimum inhibitory concentration (MIC)

(1) Palladium-catalyzed selective ortho C–H alkoxylation at 4-aryl of 1, 4-disubstituted 1, 2, 3-triazoles (Tetrahedron 2020, 76, 130985−; https://doi.org/10.1016/j.tet.2020.130985) MIC

(2) Synthesis and Structure–Activity Relationship Studies of C2-Modified Analogs of the Antimycobacterial Natural Product Pyridomycin (J. Med. Chem. 2020, 63, 1105−1131; 10.1021/acs.jmedchem.9b01457) Mtb, MIC

(3) Selective Antibacterial Activity and Lipid Membrane Interactions of Arginine-Rich Amphiphilic Peptides (ACS Appl. Bio Mater. 2020, 3, 1165−1175; 10.1021/acsabm.9b00894) NS, MIC

(4) Poly(oxanorbornene)-Coated CdTe Quantum Dots as Antibacterial Agents (ACS Appl. Bio Mater. 2020, 3, 1097−1104; 10.1021/acsabm.9b01045) MIC

(5) Antibacterial Self-Healing Hydrogel via the Ugi Reaction (ACS Appl. Polym. Mater. 2020, 2, 404−410; 10.1021/acsapm.9b00874) pen, PCN, MIC

metal induced crystallization (MIC)

(1) Si film electrodes adopting a dual thermal effect of metal-induced crystallization (MIC) and Kirkendall effect (J. Alloys Compd. 2019, 809, 151810−; https://doi.org/10.1016/j.jallcom.2019.151810) EC, OTS, MIC

(2) Au quantum dots engineered room temperature crystallization and magnetic anisotropy in CoFe2O4 thin films (Nanoscale Horiz. 2019, 4, 434−444; 10.1039/C8NH00278A) NR, XR, EM, Co, ND, QD, XRD, TEM, MIC, e-, TF

(3) Catalytic metal-induced crystallization of sol–gel metal oxides for high-efficiency flexible perovskite solar cells (J. Mater. Chem. A 2018, 6, 16450−16457; 10.1039/C8TA05973J) PSC, Cat, HTL, PCE, RH, MIC

(4) Effect of size on phase transformation temperatures in Ge/Bi/Ge films (J. Alloys Compd. 2018, 756, 50−56; https://doi.org/10.1016/j.jallcom.2018.04.335) Ge, Bi, TEM, HV, MIC

(5) In Situ Optical Monitoring of New Pathways in the Metal-Induced Crystallization of Amorphous Ge (Crystal Growth & Design 2017, 17, 5783−5789; 10.1021/acs.cgd.7b00799) OM, MIC

February 25, 2020
February 25, 2020
Org. Lett. 2020, 22 (4), 1594−1598.
February 21, 2020
February 21, 2020
J. Am. Chem. Soc. 2020, 142 (7), 3366−3370.
February 20, 2020
February 20, 2020
Org. Lett. 2020, 2 (3), 791−794.
February 19, 2020
February 19, 2020
Chem. Lett. 2020, 49 (3), 252−253.
May 28, 2016
June 7, 2016
February 11, 2018
February 13, 2020
Angew. Chem. Int. Ed. 2020, 59 (8), 3063−3068.
November 6, 2019
Org. Lett. 2019, 21 (21), 8509−8513.
February 10, 2020
Org. Lett. 2020, 22 (3), 1091−1095.
September 10, 2019
March 1, 2019
Chem. Commun. 2019, 55 (19), 2769−2772.
May 17, 2019
Org. Lett. 2019, 21 (9), 3048−3052.
February 6, 2020
Angew. Chem. Int. Ed. 2020, 59 (7), 2760−2763.
November 22, 2016
January 1, 2020
December 11, 2019
March 11, 2016
October 5, 2017
September 30, 2019
June 7, 2016
December 29, 2015
December 26, 2019
December 29, 2015
December 20, 2019
(c) Nanoniele, 2003-